/ Новости

Нейропыль как универсальный интерфейс мозг-компьютер и средство диагностики
Мишель Махарбиз – создатель первого в мире устройства для дистанционного управления насекомыми, разработал вместе с коллегами из Калифорнийского университета в Беркли новый универсальный интерфейс мозг-компьютер. Из-за малых размеров он получил название «нейропыль». Это одновременно способ более точного управления любой электроникой с помощью «силы мысли» и новый диагностический метод с высочайшей разрешающей способностью.
Интерфейсы мозг-компьютер (BCI) основаны на регистрации электрической активности отдельных групп нейронов и переводе интегрального сигнала в управляющую команду для внешнего устройства. Командовать таким образом можно чем угодно – фигуркой на экране, собственным протезом или удалённым роботом.
Как и современные методы функционального исследования головного мозга, BCI пока не отличаются высокой точностью. Их возможности ограничены габаритами устройства и количеством участков коры головного мозга, с которых технически возможно отведение отдельных потенциалов действия.
В последние годы появились установки, регистрирующие одновременно до 256 каналов. Они встречаются исключительно редко и не вписываются в бюджет большинства клиник, а ряд исследовательских и практических задач уже требует довести счёт каналов до десятков тысяч.
Отдельная проблема – длительный мониторинг состояния больного или долгие сеансы управления, выполняемые оператором. Ни пациент, ни оператор не могут сутками находиться в кресле.
Электродная шапочка для ЭЭГ (256 каналов). Изображение: biosemi.com
Первые шаги в решении данного вопроса сделала в этом году группа исследователей из университета Брауна. Недавно они создали первый беспроводной BCI. Это частично имплантируемый интерфейс мозг-компьютер, снабжённый индукционной зарядкой.
В эксперименте с макаками-резус такой прибор использовался месяцами, позволяя его обладателям относительно свободно перемещаться. Среди недостатков отмечались большие для имплантируемого устройства габариты (сантиметры), а также ограниченность числа и взаимного расположения вживляемых электродов.
Группа из Калифорнийского университета в Беркли предложила способ уменьшить размеры имплантируемых элементов до нескольких микрометров и буквально наполнить ими сосудистую оболочку головного мозга.
Устройство частицы «нейропыли» (изображение: University of California, Berkeley)
Разработанные ими сверхминиатюрные электронные сенсоры состоят из выполненной по технологии CMOS микросхемы, пьезокристалла, электродов и изолирующей полимерной оболочки. Принцип их действия напоминает практику использования чипов радиочастотной идентификации (RFID), не требующих встроенного источника питания.
По замыслу авторов частицы нейропыли свободно циркулируют в кровеносном русле. Практически этого трудно достичь из-за сложного состава крови, биологических механизмов её очистки и структуры эндотелия, но представим на минуту, что данные проблемы решены. Тогда одновременное число микросенсоров в сосудах головного мозга в любой момент времени может исчисляться тысячами.
Каждая из этих «умных частиц» сможет измерять электрическую активность ближайших нейронов. Во время первой фазы пьезоэлектрический кристалл преобразует ультразвуковые волны от промежуточного модуля в электрические сигналы и питает CMOS-схему. Во время второй он действует наоборот – вибрирует под влиянием потенциалов действия ближайшей группы нейронов.
Пьезоэлектрический эффект в частице «нейропыли» (изображение: Dongjin Seo et al.)
По сравнению с RFID, в предложенной схеме есть минимум два важных отличия. Кроме электромагнитных волн (внешний уровень) используется ультразвук (внутренний уровень), а усиление ответного сигнала микросенсоров, его преобразование и дальнейшую передачу обеспечивает промежуточный модуль.
Последний размещается под твердой мозговой оболочкой и действует как трансивер, позволяя избежать сильного затухания ультразвука и преодолеть экранирующее действие костей черепа.
Ультразвук строго определённой частоты требуется и для повышения мощности всей системы. Расчётными методами установлено, что в данных условиях сенсор с диаметром 100 мкм под воздействием ультразвука может получить до 500 мкВт, в то время как за счёт радиочастотной передачи энергии – только до 40 пВт (примерно в 10 млн. раз меньше). Кроме того, электромагнитное излучение достаточной для работы системы мощности вызывало бы слишком сильный нагрев окружающих тканей, и приводило бы к их повреждению. С ультразвуком такой риск тоже остаётся, но он значительно меньше.
Условной границей между внешним и внутренним уровнем коммуникаций служит твёрдая мозговая оболочка. До неё связь осуществляется посредством ультразвука, а после неё сигнал преобразуется в радиочастотный. Он передаётся сначала на внешний компактный блок, а затем от него – на отдельно стоящее принимающее устройство.
Схема взаимодействия компонентов интерфейса мозг-компьютер с частицами нейропыли (изображение: www.berkeley.edu)
По сравнению с потенциальными возможностями нейропыли, современная электроэнцефалография и другие методы неинвазивной нейровизуализации (функциональная ядерно-магнитная томография, позитронно-эмисионная томография) имеют на один-два порядка меньшее разрешение.
Применительно к интерфейсам мозг-компьютер, в первом приближении это эквивалентно повышению точности определения мысленной команды в десятки раз.
Текущие расчётные размеры микросенсоров в пределах 10 – 100 мкм сравнимы с диаметром пиальных сосудов и недостаточно малы для эффективного практического применения. Однако пределы масштабирования не исчерпаны. Авторы исследования полагают возможным создание в ближайшие годы более миниатюрных сенсоров с диаметром менее 10 мкм. Такие частицы смогут регистрировать электрофизиологические данные, по-прежнему удерживаясь гематоэнцефалическим барьером.
Пока речь идёт исключительно о модели, довольно точно просчитанной с учётом известных данных. Авторы «нейропыли» опираются и на экспериментальную проверку отдельных подобных элементов интерфейса мозг-компьютер на лабораторных животных. Многие вопросы предстоит решить ещё до этапа создания прототипа. Идея сейчас хоть и выглядит слишком смелой, но явно заслуживает самого пристального внимания.
Источник: http://www.computerra.ru/75536/neural-dust/
Поделиться в Живом Журнале
Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии
Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.
ПодробнееРобот открыл холодильник и принес оттуда пиво
Немецкие разработчики научили гуманоидного робота-помощника TIAGo самостоятельно искать путь к холодильнику, открывать его и приносить пиво. Модульный суперкомпьютер NVIDIA Jetson TX2, служащий зрительным центром робота, позволил ему не только эффективно проложить путь, но и найти пиво запрошенной марки по этикетке.
ПодробнееВ Швеции попытаются создать электронные копии умерших людей
Руководство крупной сети шведских похоронных бюро «Феникс» поставило перед собой амбициозную цель: попытаться создать максимально правдоподобные электронные копии усопших людей.
ПодробнееУчёные из США разработали искусственный аналог глаза
Новое изобретение представили учёные из Школы инженерных и прикладных наук при Гарвардском университете — они создали искусственный глаз, работающий по принципу человеческого.
ПодробнееАмериканцы занялись разработкой реактивных дронов для истребителей
Массачусетский технологический институт по заказу ВВС США занялся разработкой компактных реактивных беспилотных летательных аппаратов, которые можно было бы запускать со стандартного подвеса для ракет под крылом истребителя. Новая разработка получила название Firefly.
ПодробнееToyota представила гуманоидного робота с экзоскелетным управлением
Компания Toyota представила гуманоидного робота T-HR3, управляемого с помощью экзоскелетного контроллера с шлемом виртуальной реальности. Система позволяет оператору управлять движениями робота на месте или передвигать его, а также чувствовать отдачу при взаимодействии с объектами.
ПодробнееЧеловекоподобный робот научился делать сальто
Специалисты Boston Dynamics научили прямоходящего робота Atlas выполнять сальто. Ролик с демонстрацией его новых способностей опубликован на YouTube-канале компании.
ПодробнееРобот-спасатель от Honda: пять «глаз» и 33 степени подвижности
На Конференции по робототехнике в Ванкувере компания Honda представила прототип робота-спасателя E2-DR. У новинки 33 степени подвижности, пять «глаз» и защищенный от пыли и влаги корпус.
ПодробнееToyota представила автомобиль-робот, в салоне которого сразу 2 водительских места
Казалось бы, суть самоуправляемых автомобилей заключается в том, чтобы максимально обеспечить удобство пассажиров и «убрать» из салона водителя, доверив контроль за ситуацией роботу. Вроде бы логичное решение, но вот автоконцерн Toyota думает иначе. Недавно они представили крайне продвинутую версию самоуправляемого авто. Только вот водительских мест в нем аж целых два.
ПодробнееRHP2 - гуманоидный робот, созданный для того, чтобы падать, подниматься и снова падать
Исследователи-робототехники во всем мире тратят безумно большое количество времени и усилий для того, чтобы предотвратить или уменьшить вероятность падения создаваемых ими роботов.
ПодробнееМифы и факты о сверхумном искусственном интеллекте
Станет ли искусственный интеллект лучшим изобретением человечества или же, наоборот, его худшей ошибкой?
Подробнее/ мнения экспертов и членов инициативной группы
- Профессор практики Московской школы управления СКОЛКОВО, к.э.н., партнер группы "Метавер"
Павел Олегович
Лукша«Развитие интерфейсов позволяет принципиально по-другому взаимодействовать не только с локальным пространством, но и с глобальным пространством, т.е. продолжая «мозг – компьютер – Сеть», мы можем получать системы принципиально нового способа организации».
- Историк и теоретик культуры, культуролог, консультант по культурному развитию. Доцент Института искусств и культуры и Философского факультета ТГУ
Дмитрий Владимирович
Галкин«Искусство – уникальный ресурс для фабрики инноваций. Только в искусстве креативная мощь так тесно связана с порождением смыслов и гуманизацией технологий...»
- Доктор медицинских наук, профессор, заведующий лабораторией роста клеток и тканей Института теоретической и экспериментальной биофизики РАН
Борис Карпович
Гаврилюк«Для кожи киборга нужно просто сделать систему питания. А вообще... мы ведь несложно устроены! Есть всего несколько систем: кровеносная разносит кислород и питательные вещества, выделительная выводит отходы. Остальное — рабочие органы. Вначале можно сделать простейший живой организм. А потом более сложные системы...»
- Доктор биологических наук, профессор, изобретатель аппарата «Биоискусственная печень»
Вячеслав Евгеньевич
РябининЧлен инициативной группы«Вся тенденция развития науки показывает: то, что мы считали невозможным, становится возможным. Кто мог представить, что руки и ноги начнут ходить под влиянием соответствующих импульсов? Прогресс движется не в арифметической, а в геометрической прогрессии...»
- Руководитель Кластера космических технологий и телекоммуникаций Фонда Сколково, космонавт-испытатель, член Российской академии космонавтики
Сергей Александрович
Жуков«Я абсолютно убежден в том, что движение «2045» появилось в нужное время в абсолютно нужном месте, потому что верю в великое будущее России, ее подъем после временных трудностей».
- Директор Центра клеточных и биомедицинских технологий Первого Московского государственного медицинского университета, специалист по осознанному управлению здоровьем, биотерапии и профилактике старения
Дмитрий Алексеевич
ШаменковЧлен инициативной группы«Тело постепенно становится искусственным, появляются новые ткани, замещающие существующие, новые средства коммуникации, так или иначе расширяющие пределы нашего тела. Безусловно, человек технологизируется. Поэтапно мы движемся к формированию кибернетического организма...»
- Доктор философских наук, профессор
Сергей Владимирович
Кричевский«...В таком теле, как бы там медицина ни боролась, увы, есть масса рисков, радиационных и прочих, которые пока непреодолимы. И мы не можем существовать вне Земли, в этой враждебной среде, не решив эти вопросы».
- Член-корр. РАН, профессор МГУ, заведующий лабораторией «Психология общения и психосемантика» (МГУ)
Виктор Федорович
Петренко«Возможно, вырабатывая своеобразную систему значений, не привязанную к нашему конкретному миру, с одной стороны, а с другой – разрабатывая изощренные техники медитации и психопрактики, мы выйдем на контакт с возможными мирами на глубинных медитативных уровнях...»
- Доктор химических наук, профессор, заведующий кафедрой химической энзимологии МГУ, член-корреспондент Российской Академии наук, директор Института биохимической физики РАН
Сергей Дмитриевич
ВарфоломеевЧлен инициативной группы«Нужно иметь электронный вариант мозга. Физический мозг, на мой взгляд, не может являться предметом интереса, так как он очень субтилен. Но вот создание электронного аналога с полным рецепторным оснащением, которое имело бы ту же историю, стимулы, мотивации, — это может оказаться очень интересно...»
- Доктор биологических наук, профессор, заведующий лабораторией нейрофизиологии и нейроинтерфейсов биологического факультета МГУ им. М.В. Ломоносова
Александр Яковлевич
Каплан«К тому времени, когда мозг можно будет перенести в искусственное тело, роботы достигнут совершенства формы и будут выглядеть, как вполне приличное человеческое тело...»
- Директор Филиала РГМУ «НКЦ геронтологии» Минздравсоцразвития РФ, академик РАМН, доктор медицинских наук, профессор
Владимир Николаевич
Шабалин«Россия была и остаётся богатой интеллектуалами, несмотря на значительную утечку мозгов за рубеж. А когда будут первые результаты, с удовольствием вернутся и наши специалисты и потянутся иностранные...»
- Футуролог, трансгуманист, писатель, член Исследовательского общества Джеймса Мартина в Институте будущего человечества в Оксфордском университете
Андерс
Сандберг«Я, определенно, захотел бы перенести свой разум в искусственное тело, если бы для этого существовала достаточно безопасная технология...»
- Доктор биологических наук, профессор, заведующий лабораторией математической нейробиологии Института высшей нервной деятельности и нейрофизиологии РАН
Александр Алексеевич
Фролов«Проблема создания искусственной памяти, сохраняющей содержимое естественной памяти индивидуального человека, хотя и является сложной, но представляется разрешимой...»
- Доцент кафедры информационных технологий Киотского университета и профессор Университета Осаки (Osaka University), двадцать восьмой гений из списка «Сто гениев современности», создатель антропоморфного робота «Геминоид» HI-1 (Geminoid)
Хироси
Исигуро«...Однажды мы сможем добиться появления аватаров и воспроизведем функции человеческого мозга внутри этого робота. И тогда люди смогут устремиться к бессмертию...»
- Художник, теоретик искусства, куратор Государственного центра современного искусства (Калининградский филиал)
Дмитрий Хаметович
БулатовЧлен инициативной группы«В ближайшем будущем гибридные схемы из комбинаций живых и неживых элементов позволят вернуть утраченные или изначально отсутствующие функции. И конечно, заметно усилить их по сравнению с обычными...»