/ Новости

Захват объектов лучом лазера — от фантастики до действующих приборов
Способность притягивать предметы с помощью каких-либо лучей до недавнего времени считалась уделом научной фантастики. Лучевой захват небольших объектов, людей и целых космических кораблей стал излюбленным приёмом режиссёров со времён сериала Star Trek. Знакомые с физикой зрители лишь улыбались в такие моменты, вспоминая работы Кеплера, Максвелла и Лебедева. Казалось бесспорным, что световое давление должно отталкивать любое тело, а не притягивать его... но не будем столь категоричны.
Предпосылки
С восьмидесятых годов XX века известно об «оптических пинцетах». Такие приборы позволяют манипулировать микрочастицами с помощью лазерных лучей. При определённых параметрах электрического поля световой волны частицы будут удерживаться на месте, преодолевая силу светового давления. Удержание — ещё не движение навстречу, но данный эффект был важным началом.
Первые исследования в этом направлении проводил Артур Ашкин (Artur Ashkin) – выдающийся физик, лауреат премии Харви, работавший в Lucent Technologies и Bell Laboratories. Ашкин опубликовал в 1970 году статью об изучении особенностей рассеивания света на микрочастицах. Его интересовало как рэлеевское и Ми рассеяние влияет на движение частиц, но тогда эта пионерская работа не привлекла большого внимания. Первые практические результаты группа Ашкина в Bell Laboratories получила только спустя семнадцать лет.
Весной 1987 года учёным удалось добиться прецизионного перемещения частиц вируса табачной мозаики и бактериальных клеток E. coli в водном растворе. В эксперименте использовался аргоновый лазер мощностью 120 мВт, работающий на длине волны 5145 ангстрем.
Схема эксперимента Ашкина (изображение: журнал Science, 1987)
К концу того же года научный коллектив увеличил масштабы контролируемых объектов и силу воздействия. В декабрьском номере Nature появилась статья об аналогичной схеме удержания эритроцитов и одноклеточных грибов с помощью ИК-лазеров. При контролируемом перемещении достигались скорости от 100 до 500 мкм в секунду. По отношению к размерам самих клеток это довольно высокие показатели.
Оптический пинцет с ИК-лазером (изображение: Nature)
Современные оптические пинцеты в общем случае позволяют манипулировать диэлектрическими частицами с размерами от нескольких ангстрем до десятков микрометров. Действующая на них сила оценивается в пико- и наноньютонах.
В случае живых клеток предел ограничивается также величиной безопасного воздействия. Опыт использования оптических пинцетов в биологических исследованиях позволяет говорить о неразрушающем характере его воздействия при мощности в десятки милливатт. Попытки использовать лазеры мощностью в сотни милливатт приводили к разрушению клеточных мембран.
Оптическими пинцетами удаётся сортировать частицы в пределах кубических микрометров, захватывать отдельные клетки и выполнять с ними высокоточные манипуляции.
Возможность притягивать их лучом оставалась мечтой.
От удержания к притяжению
Ситуация кардинально изменилась осенью 2011 года, когда движение объектов навстречу лазерному лучу впервые достоверно наблюдалось в условиях лаборатории.
Группа физиков из университета Фудань в Шанхае при участии своих коллег из университета науки и технологии в Гонконге опубликовала в журнале Nature Photonics результаты необычного опыта.
Цзюнь Чэнь и Чжифан Линь использовали два лазерных излучателя. Создаваемое ими поле электромагнитного излучения приближалось по характеристикам к лучу Бесселя – гипотетической модели, в которой отсутствует рассеивание.
Модель взаимодействия индуцированного дипольного момента на сфере с электрическим полем лазерного луча (University of St Andrews)
Ближайшее физически возможное приближение – луч Бесселя-Гаусса повторял идею оптического пинцета, но был реализован с некоторыми отличиями.
Режимы работы двух источников и параметры аксиконической линзы были подобраны так, чтобы добиться максимального уменьшения проекции суммарного импульса фотонов вдоль направления общего луча.
Характер рассеивания светового пучка на микрочастицах изменился таким образом, что общий вектор силы двигал их уже навстречу источнику излучения, заставляя перепрыгивать между зонами максимумов.
Ознакомившись с публикацией, в том же 2011 году NASA выделила грант в размере 100 тысяч долларов на изучение технической перспективы описанного эффекта. Три сотрудника агентства – Пол Стисли (Paul Stysley), Барри Койл (Barry Coyle) и Деметриос Поулиос (Demetrios Poulios) должны были проверить результаты, предложить свою схему и область практического применения.
Учитывая специфику научных интересов NASA, выбор пал на разработку оптической ловушки для автоматических межпланетных станций и космических зондов. На основе эффекта обратного движения в лучах лазера микрочастиц определённого размера (< 10 мкм) предполагалось проводить их бесконтактный отбор и первичную сортировку.
Перспективы
Создаваемая лазерная ловушка крайне актуальна для работы в безвоздушном пространстве и на небесных телах, не имеющих выраженной атмосферы. В таких условиях анализируемые частицы нельзя или крайне затруднительно захватить с потоком газовой смеси, как это делает аспиратор пробоотборника.
Компьютерная симуляция процесса оптического транспорта показана в следующем видеоролике.
NASA планирует использовать лазерные устройства захвата микрочастиц для изучения состава различных объектов Солнечной системы. Наиболее подходящие условия имеются в пылевых хвостах комет, а также на многочисленных спутниках Юпитера и Сатурна. Возможно, аналогичные бесконтактные пробоотборники будут установлены и на следующих марсоходах. Вместе с инструментами на борту действующих роверов Curiosity и Opportunityони позволят создать на поверхности Красной планеты настоящий лабораторный комплекс.
Над проблемой создания эффективной оптической ловушки параллельно трудятся и физики Нью-Йоркского университета, об успехах которых "Компьютерра" писала ранее.
Дэвид Раффнер (David Ruffner) и Дэвид Гриер (David Grier) в конце 2012 годасоздали аналогичное устройство. Во время испытаний им удавалось захватить микросферы диоксида кремния из взвези частиц в воде. В отличие от простого оптического пинцета, частицы перемещались навстречу источнику в пределах 30 микрометров.
Развивая идею, научный коллектив шотландского университета в городе Сент-Эндрюс дополнительно показал, что двумерное управление микрочастицами можно осуществлять за счёт вращения плоскости поляризации лучей.
Изменение результирующего вектора в зависимости от плоскости поляризации (изображение: Nature Photonics)
Исследование позволит быстрее выполнять сортировку, но никак не увеличит масштабы воздействия.
Активно исследуемое сейчас "притягивающее" действие лучей Бесселя-Гаусса имеет квантовую природу и потому принципиально ограничено масштабами микромира.
Речь идёт исключительно о силе в несколько миллиардных долей ньютона и размерах частиц до десятков микрометров. Для быстрых манипуляций также желательно, чтобы они обладали малой электропроводностью и имели округлую форму.
Любые тела крупнее сотой доли миллиметра будут сильно нагреваться и отталкиваться световым давлением, так как для них не произойдёт изменение характера рассеивания вдоль оси луча и не возникнет условий для преобладания "тянущего" вектора над "толкающим".
Хотя физикам так и не удалось воплотить мечту фанатов "Звёздного пути", на некоторых космических аппаратах в ближайшем будущем всё-таки будут установлены миниатюрные излучатели "притягивающих лучей".
Источник: http://blogs.computerra.ru/51468
Поделиться в Живом Журнале
Стать расой бессмертных – главная эволюционно-историческая задача человечества в III тысячелетии
Имея мышление бессмертных, парадигму бессмертных в качестве мировоззренческой основы, такие люди обязательно реализуют подобные технологии, и мир радикально изменится. Эволюционная ветвь гомо сапиенс в очередной раз сделает крутой вираж и вынесет человечество к невообразимым высотам, туда, где раньше парили только избранные одиночки – бессмертные и боги.
ПодробнееРобот открыл холодильник и принес оттуда пиво
Немецкие разработчики научили гуманоидного робота-помощника TIAGo самостоятельно искать путь к холодильнику, открывать его и приносить пиво. Модульный суперкомпьютер NVIDIA Jetson TX2, служащий зрительным центром робота, позволил ему не только эффективно проложить путь, но и найти пиво запрошенной марки по этикетке.
ПодробнееВ Швеции попытаются создать электронные копии умерших людей
Руководство крупной сети шведских похоронных бюро «Феникс» поставило перед собой амбициозную цель: попытаться создать максимально правдоподобные электронные копии усопших людей.
ПодробнееУчёные из США разработали искусственный аналог глаза
Новое изобретение представили учёные из Школы инженерных и прикладных наук при Гарвардском университете — они создали искусственный глаз, работающий по принципу человеческого.
ПодробнееАмериканцы занялись разработкой реактивных дронов для истребителей
Массачусетский технологический институт по заказу ВВС США занялся разработкой компактных реактивных беспилотных летательных аппаратов, которые можно было бы запускать со стандартного подвеса для ракет под крылом истребителя. Новая разработка получила название Firefly.
ПодробнееToyota представила гуманоидного робота с экзоскелетным управлением
Компания Toyota представила гуманоидного робота T-HR3, управляемого с помощью экзоскелетного контроллера с шлемом виртуальной реальности. Система позволяет оператору управлять движениями робота на месте или передвигать его, а также чувствовать отдачу при взаимодействии с объектами.
ПодробнееЧеловекоподобный робот научился делать сальто
Специалисты Boston Dynamics научили прямоходящего робота Atlas выполнять сальто. Ролик с демонстрацией его новых способностей опубликован на YouTube-канале компании.
ПодробнееРобот-спасатель от Honda: пять «глаз» и 33 степени подвижности
На Конференции по робототехнике в Ванкувере компания Honda представила прототип робота-спасателя E2-DR. У новинки 33 степени подвижности, пять «глаз» и защищенный от пыли и влаги корпус.
ПодробнееToyota представила автомобиль-робот, в салоне которого сразу 2 водительских места
Казалось бы, суть самоуправляемых автомобилей заключается в том, чтобы максимально обеспечить удобство пассажиров и «убрать» из салона водителя, доверив контроль за ситуацией роботу. Вроде бы логичное решение, но вот автоконцерн Toyota думает иначе. Недавно они представили крайне продвинутую версию самоуправляемого авто. Только вот водительских мест в нем аж целых два.
ПодробнееRHP2 - гуманоидный робот, созданный для того, чтобы падать, подниматься и снова падать
Исследователи-робототехники во всем мире тратят безумно большое количество времени и усилий для того, чтобы предотвратить или уменьшить вероятность падения создаваемых ими роботов.
ПодробнееМифы и факты о сверхумном искусственном интеллекте
Станет ли искусственный интеллект лучшим изобретением человечества или же, наоборот, его худшей ошибкой?
Подробнее/ мнения экспертов и членов инициативной группы
- Доктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН
Виталий Львович
Дунин-Барковский«Для создания искусственного тела нужен хороший мозг, интеллект. А он может быть и искусственным. Воссоздание органов — очень сложная и ресурсоемкая задача. При работе над искусственным интеллектом затраты минимальны, а результаты колоссальны...»
- Доктор биологических наук, профессор, изобретатель аппарата «Биоискусственная печень»
Вячеслав Евгеньевич
РябининЧлен инициативной группы«Вся тенденция развития науки показывает: то, что мы считали невозможным, становится возможным. Кто мог представить, что руки и ноги начнут ходить под влиянием соответствующих импульсов? Прогресс движется не в арифметической, а в геометрической прогрессии...»
- Доктор физико-математических наук, профессор, руководитель группы автоволновых процессов, заведующий лабораторией Института прикладной физики РАН
Владимир Григорьевич
ЯхноЧлен инициативной группы«Думаю, что именно понимание закономерностей в иерархии механизмов управления живыми системами позволит создать основу для производства эффективно работающих искусственных органов и имитаций тел человека.»
- Директор Всероссийского НИИ электрификации сельского хозяйства РАСХН
Дмитрий
Стребков«Мы предлагаем шесть стратегических проектов для будущего мира, которые позволят увеличить энергетическую безопасность и создать новое энергетическое снабжение Земли, не основанное на сжигании ископаемого топлива».
- Кандидат физико-математических наук, старший научный сотрудник лаборатории термостойких термопластов ИСПМ РАН, создатель наносенсорной нейроподобной системы «Электронный нос»
Михаил Юрьевич
ЯблоковЧлен инициативной группы«При создании искусственного человека к робото-техническому направлению, которое сейчас преобладает, надо добавить эмоциональное. На самом деле, эта идея комплексная, она витает в воздухе...»
- Доктор биологических наук, профессор, заведующий лабораторией математической нейробиологии Института высшей нервной деятельности и нейрофизиологии РАН
Александр Алексеевич
Фролов«Проблема создания искусственной памяти, сохраняющей содержимое естественной памяти индивидуального человека, хотя и является сложной, но представляется разрешимой...»
- Доктор философских наук, профессор, главный научный сотрудник Института философии РАН, сопредседатель Научного совета РАН по методологии ИИ
Давид Израилевич
Дубровский«... этот проект ["Россия 2045"], безусловно, заслуживает всемерной поддержки. Он инициирован молодыми людьми, полными веры в свою высокую миссию. Это яркий акт пассионарности... вызов нашей академической общественности, среднему, сероватому научному сознанию, лишенному порывов вдохновения».
- Руководитель Отдела медицинской психологии (Научный Центр Психического Здоровья РАМН), действительный член Академии медико-технических наук РФ
Сергей Николаевич
Ениколопов«Разговоры о том, что технологически мы можем достичь бессмертия, во всяком случае, фантастического удлинения жизни, ведут к пересмотру огромного пласта наших собственных убеждений».
- Доктор физико-математических наук, профессор, заведующий кафедрой биомедицинских систем Московского государственного института электронной техники, главный редактор журнала «Медицинская техника»
Сергей Васильевич
СелищевЧлен инициативной группы«Глобальных и неразрешимых технических проблем для создания полностью искусственного тела не существует. Все задачи понятны и потенциально решаемы...»
- Доктор технических наук, профессор, заслуженный деятель наук России, является автором более 300 научных работ, в том числе 25 монографий
Александр Иванович
Галушкин«Я убежден в том, что нейросетевые технологии – это основа построения будущих систем управления роботами, т.е. мозга будущих роботов».
- Директор Филиала РГМУ «НКЦ геронтологии» Минздравсоцразвития РФ, академик РАМН, доктор медицинских наук, профессор
Владимир Николаевич
Шабалин«Россия была и остаётся богатой интеллектуалами, несмотря на значительную утечку мозгов за рубеж. А когда будут первые результаты, с удовольствием вернутся и наши специалисты и потянутся иностранные...»
- Доктор медицинских наук, профессор, заведующий лабораторией роста клеток и тканей Института теоретической и экспериментальной биофизики РАН
Борис Карпович
Гаврилюк«Для кожи киборга нужно просто сделать систему питания. А вообще... мы ведь несложно устроены! Есть всего несколько систем: кровеносная разносит кислород и питательные вещества, выделительная выводит отходы. Остальное — рабочие органы. Вначале можно сделать простейший живой организм. А потом более сложные системы...»
- Философ, профессор Оксфордского университета, известный своими работами об антропном принципе, основатель (вместе с Д. Пирсом) Всемирной ассоциации трансгуманистов
Ник
Бостром«Цифровой путь [бессмертия] – это наша возможность разработать технологию полного копирования мозга, когда мы могли бы создать очень подробную модель конкретного человеческого мозга и воспроизвести ее на компьютере. Тогда мы имели бы потенциал бесконечного существования, создавали бы запасные копии человека и тому подобное...»
- Член-корр. РАН, профессор МГУ, заведующий лабораторией «Психология общения и психосемантика» (МГУ)
Виктор Федорович
Петренко«Возможно, вырабатывая своеобразную систему значений, не привязанную к нашему конкретному миру, с одной стороны, а с другой – разрабатывая изощренные техники медитации и психопрактики, мы выйдем на контакт с возможными мирами на глубинных медитативных уровнях...»
- Доктор химических наук, профессор, заведующий кафедрой химической энзимологии МГУ, член-корреспондент Российской Академии наук, директор Института биохимической физики РАН
Сергей Дмитриевич
ВарфоломеевЧлен инициативной группы«Нужно иметь электронный вариант мозга. Физический мозг, на мой взгляд, не может являться предметом интереса, так как он очень субтилен. Но вот создание электронного аналога с полным рецепторным оснащением, которое имело бы ту же историю, стимулы, мотивации, — это может оказаться очень интересно...»